Tetrahedron Letters No. 39, pp 3473 - 3476, 1977. Pergamon Press. Printed in Great Britain.

STEREOSELECTIVE SYNTHESIS OF (+)-PALITANTIN

Akitami Ichihara*, Makoto Ubukata, and Sadao Sakamura Department of Agricultural Chemistry, Faculty of Agriculture Hokkaido University, Sapporo 060, Japan

(Received in Japan 2 July 1977; received in UK for publication 8 August 1977)

Palitantin (1) is one of the highly oxygenated cyclohexane derivatives 1 , isolated from Pen. frequentans Westling together with an antibiotic compound frequentin (2) .²⁾ The latter has been chemically derived from $1,$ ³⁾ We wish to report here stereoselective synthesis of (\pm) -palitantin (1) and then $(+)$ frequentin (2) in formal sense, utilizing efficiently neighboring group effect as a synthetic strategy for regioselective reaction.⁴⁾

Diels-Alder reaction (toluene, reflux, 1.5 hr) of maleic anhydride and acetoxybutadiene prepared from crotonaldehyde and isopropenyl acetate⁵⁾ produced the adduct (3) , mp 56 \sim 59.⁶⁾, $\sqrt{\frac{KBr}{max}}$ 1850, 1780, 1735 cm⁻¹, which was treated with 3% methanolic hydrogen chloride at room temperature to yield quantitatively dimethyl ester 4, m/e 214 (M^+) , $\bigvee_{m \text{ax}}^{film}$ 3400, 1730 cm⁻¹; \bigcirc_{TMS}^{CDC1} 3 3.72, 3.74 (each 3H, s, OCH_3), 4.40 (lH, bs, -CH-O). cis-Hydroxylation of the ester 4 with osmium tetroxide (THF-H₂O, BaClO₄, 43 hr) followed by bisulfite work up

3473

gave a 92% of single triol $\frac{5}{6}$, mp 136~137, which was readily converted to the **acetonide** $6, m/e$ 288 $(M^+), \frac{1}{2}$ CDC1₃ 1.35, 1.49 (each 3H, s, CH₃), 3.75 (6H, s, CO_2CH_3), 4.25 (1H, t, J=5Hz, -CH-OH). The stereochemistry of 5 was confirmed by the fact that the acetate \mathcal{I} of the acetonide 6 exhibited a signal at ζ 5.00 **(lH, dd, J=8Hz, SHz, -CHOAc), whose data are compatible to stable chair confor**mation arising from the configuration \sim

Regioselective reduction of the ester <u>6</u> was accomplished by efficient **utilization of neighboring hydroxy group effect using diisobutylaluminum hydride (ca. 7 equivalents, toluene, -6O'C, 3 hr) as a reducing agent to give a** $mixture of hemiacetals g mp 112~114, m/e 230 (M⁺), S_{TMS} 3 5.54 (M⁺),$ -CH-OH), 5.67 ({M}, d, J=5.5Hz, -CHOH) in 45% yield. Selective formation of the hemiacetals 8 can be rationalized assuming chelated aldehyde 6a, which by subsequent reduction was converted to 8. Direct Wittig reaction of 8 with (E)-2**hexenyltriphosphonium bromide under various conditions involved dehydration to afford nomo-ol 9. The facile dehydration would result from easy deprotonation of 2-H in Wittig reaction. Therefore, in order to prevent the dehydration the**

hemiacetals were acetylated to the diacetate 2, and then hydrolyzed (acetone-

¹⁷
H₂O-HCl, 12 hr) regio-and stereoselectively to the monoacetate 10, mp 115~116°, $\frac{KBT}{mx}$ 3400, 1745 cm⁻¹; $\frac{CDC1}{TMS}$ 3 2.07 (3H, s, OCOCH₃), 5.41 (1H, s, OC<u>H</u>-OH), in **which the acetyl group would suppress the tendency of deprotonation at 2-H by** the inductive effect. Witting reaction (THF, n-BuLi, 2 hr at $5 \sim 10^{6}$ and then 8.5 hr at room temperature) of the acetate 10 with (E)-2-hexenyltriphosphonium bromide gave two products 11, m/e 380 (M⁺), $\sqrt{\frac{f i \ln n}{\ln \alpha}}$ 1745, 985 cm $^{-1}$; $\frac{\zeta}{\zeta}$ CDC¹3 2.02, 2.12 (each 3H, s, OCOCH₃), 4.10 (2H, d, J=5.5Hz, CH₂OAc), 5.08 (1H, dd, J=6Hz, 4.5Hz , -CHOAc), $5.28 \sim 6.39$ (4H, m , \blacktriangleright ^H), and 12, m/e 338 (M⁺); $\sqrt{\frac{f11m}{max}}$ 3460, $1740, 990 \text{ cm}^{-1}; \; \frac{\text{S CDC1}}{1 \text{m}}$ $\frac{\text{S CDC1}}{3}$ 2.03 (3H, s, OCOCH₃), 3.89 (1H, dd, J=6.5Hz, 4Hz, $-$ CHOH), 4.20 (2H, m, $-$ CH₂OAc), 5.30 \sim 6.21 (4H, m, \rightarrow ^H) in a ratio of 4 : 1, accompanied with appreciable amount of 8. The presence of (8E, 10E)-dienyl **moiety in 5 and 2 was proved by the fact that strong absorption bands at 985 and 990 cm -1 were observed respectively in the IR spectra. The formation of the** diacetate 11 would result from intermolecular acyl migration under the reaction **conditions.**

Hydrolysis of 11 and 12 proceeded quantitatively to give diol 13, mp $85 \sim 87$, $\sqrt{\frac{KBr}{max}}$ 3300 \sim 3600, 1620, 980 cm^{-1} ; $\frac{1}{3}$ $\frac{CDC1}{TMS}$ 3.67 \sim 3.85 (2H, m, CH₂OH), 3.97 (1H, dd, J=7Hz, 4.5Hz, -CHOH). Treatment of the diol 13 with trityl **chloride in pyridine afforded compound 2, which was quantitatively oxidized** with chromium trioxide to ketone 15, m/e 536 $(\texttt{M}^+), \bigvee \frac{\texttt{film}}{\texttt{max}}$ 1720 cm $^{-1};$ $\bigcirc \frac{\texttt{CDC1}}{\texttt{TMS}}$ 3 4.30 (lH, d, J=5.5Hz, CH-O). Epimerization of C-2 substituent of 15 to natural

configuration 16 was carried out by treatment of 15 with DBU for 5 hr at 25. **Removal of protective groups, trityl and acetonide groups (MeOH, TsOH, 25, 5 hr),** proceeded smoothly to give $(+)$ -palitantin (1) , mp $139 \sim 141^{\circ}$, identical by IR, **NMR, MS and chromatographic comparison with authentic material. Acknowledgement. We are grateful to Dr. 2. Kis, Sandoz LTD, Basle, for providing us samples of natural frequentin and palitantin.**

References and footnotes

- 1) This paper constitutes part IX of " Synthetic studies of highly oxygenated **cyclohexane,derivatives 'I. For part VIII, A. Ichihara, R. Kimura, K. Oda and S. Sakamura, Tetrahedron Lett., 4741 (1976)**
- **2) J. H. Birkinshaw, Biochem. J.,** IJO, **801 (1936)** : **ibid., \$I-, 271 (1952); P. J. Crutis and Druncanson, ibid.,** 5l, **276 (1952); K. Bowden, B. Lythgoe and**

K. J. S. Marsden, J. Chem. Soc., 1662 (1959)

3) H. P. Sigg, Helv. Chim. Acta, 46, 1061 (1963)

- **4) For general examples see B. Capon and S. P. McManus " Neighboring Group** Participation ", vol. 1, Plenum, New York, N. Y., 1976. Other examples of **utilization of neighboring group effects for the regioselective synthesis in this series') are found in a) A. Ichihara, K. Oda and S. Sakamura, Tetrahedron Lett., 5105 (1972); b) idem. Agric. Biol. Chem., 38, 163 (1974); c) A. Ichihara, M. Kobayashi, K. Oda and S. Sakamura, Tetrahedron Lett., 4231 (1974); d) K. Oda, A. Ichihara and S. Sakamura, ibid., 3187 (1975) Neighboring group effects in natural product chemistry are reviewed;**
	- A. Ichihara, Yuki Gosei Kagaku Kyokai Shi, 34, 378 (1976)
- **5) H. J. Hagemeyer, jr., and D. C. Hull, Ind. Eng. Chem., 41, 2920 (1949)**
- **6) Satisfactory elemental analysis and spectroscopic data have been obtained for all crystalline compounds.**